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Recent work by Formisano et al. 
(2014) suggested the combination of 
computational modeling, machine 
learning and neuroimaging to 
pur sue a more mechani s t i c 
understanding of human sensory 
processing. In the auditory domain, 
the modeling would typically consist 
of explicit transformations of 
spectral and temporal information. 
Each model represents a different 
h y p o t h e s i s  a b o u t  n e u r a l 
information processing.  

Features learned using a deep, CNN trained for object recognition have 
recently been compared to recordings from macaque IT and human ventral 
stream during visual stimulation. A representation similarity analysis (RSA) 
revealed that the similarity structure of the features learned by the CNN was 
significantly more similar to that of the brain data than any other model, 
suggesting that the brain may perform similar information processing.  
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Figure 4: A) Comparison of model representations to Monkey IT (solid bars) and Human ventral
stream (hatched bars). The HMO model followed by a simple task-blend based linear reweighting
(red bars) quantitatively approximates the human/monkey fit value (black bar), and captures both
monkey and human ventral stream structure more effectively than any of the large number of mod-
els shown in [18], or any of the additional comparison models we evaluated here (cyan bars). B)
Representational Dissimilarity Matrices show a clear qualitative similarity between monkey IT and
human IT on the one hand [19] and between these and the HMO model representation.

tional approaches in understanding cortical processing. These results further develop a long-standing
functional hypothesis about the ventral visual stream, and show that more rigorous versions of its
architecture and functional constraints can be leveraged using modern computational tools to expose
the transformation of visual information in the ventral stream.

The picture that emerges is of a general-purpose object recognition architecture – approximated by
the NHMO network – situtated just posterior to a set of several downstream regions that can be
thought of as specialized linear projections – the matrices W – from the more general upstream
region. These linear projections can, at least in some cases, be characterized effectively as the sig-
nature of interpretable functional tasks in which the system is thought to have gained expertise.
This two-step arrangement makes sense if there is a core set of object recognition primitives that
are comparatively difficult to discover, but which, once found, underlie many recognition tasks.
The particular recognition tasks that the system learns to solve can all draw from this upstream
“non-linear reservoir”, creating downstream specialists that trade off generality for the ability to
make more efficient judgements on new visual data relative to the particular problems on which
they specialize. This hypothesis makes testable predictions about how monkey and human visual
systems should both respond to certain real-time training interventions (e.g. the effects of “nur-
ture”), while being circumscribed within a range of possible behaviors allowed by the (presumably)
harder-to-change upstream network (e.g. the constraints of “nature”). It also suggests that it will
be important to explore recent high-performing computer vision systems, e.g. [20], to determine
whether these algorithms provide further insight into ventral stream mechanisms. Our results show
that behaviorally-driven computational approaches have an important role in understanding the de-
tails of cortical processing[24]. This is a fruitful direction of future investigation for such models to
engage with additional neural and behavior experiments.
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Images copied from Yamins, D., Cadieu, C., & Dicarlo, J. J. (2013). Hierarchical Modular 
Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and 
Human Ventral Stream. Neural Information Processing Systems (NIPS). 

Images copied from Zeiler, M., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., … 
Hinton, G. E. (2013). On rectified linear units for speech processing. In Acoustics, Speech and 
Signal Processing (ICASSP), 2013 IEEE International Conference on. 

Images copied from Santoroa, R., Moerel, M., De Martino, F., Goebel, R., Ugurbil, K., Yacoub, E., 
& Formisano, E. (2014). Encoding of Natural Sounds at Multiple Spectral and Temporal 
Resolutions in the Human Auditory Cortex. PLOS Computational Biology, 10(1), e1003412. 

The authors proposed to evaluate 
their encoding models using a 
s t a n d a rd m a ch i n e l e a r n i n g 
paradigm. fMRI responses to a 
variety of natural sounds are used to 
estimate the encoding models using 
regularized multivariate linear 
regression. To evaluate performance, 
each encoding model is used to 
predict brain responses to an 
independent set of stimuli.  

Future Directions 
In the above description, hypotheses about auditory information 
processing are embedded in the specific audio features passed to the 
linear regression. We propose to replace the explicit audio features with 
representation learning models where hypotheses about neural 
information processing are embedded in the architectural design of the 
representation learning model (e.g. convolutional, feature pooling, non-
linear response characteristics). Such representation learning models 
could be trained to perform tasks such as speech reconstruction, 
recognition, or synthesis and then used to calculate features or to 
generate stimuli. The underlying assumption behind this approach is 
that the brain uses intermediate representations that are optimized for 
complex auditory behaviours. We argue that representation learning 
offers valuable tools to the study of neural information processing. 

Introduction 
This poster introduces representation learning, an area of research of 
machine learning, and summarizes recent work using deep, artificial 
neural networks to study sensory information processing. We present 
ideas for future research combining representation learning, 
computational modeling, and neuroimaging. 

A simple autoencoder 

The figure above shows a random subset of features learned in an 
unsupervised way using a sparse auto-encoder neural network with 
rectified linear units and natural speech as input. The vertical axis is 
over frequencies and horizontal axis is over time (26 frames, 10ms 
long each). The right panel shows examples from the validation set.  

Fig. 4. Validation frame accuracy over time using HNN with
different number of hidden layers and SGD.

Nr. hid. layers 1 2 4 8 10 12

WER % 16.0 12.8 11.4 10.9 11.0 11.1

Table 1. Word error rate of HNN with varying number of
hidden layers.

word error rate is superior when using HNN and SGD. The
word error rate of a logistic network trained with Adagrad is
11.8% (slightly better than when training using SGD), while
the word error rate of HNN is 11.7 and 11.4% when using
Adagrad and SGD, respectively. Since a difference of 0.1% is
statistically significant in our data set, we conclude that HNNs
are not only easier to train but also they generalize better.

Finally, fig. 4 shows that extremely deep HNNs (we tested
up to 12 hidden layers) can be successfully trained from ran-
dom initialization. Since we did not allocate more resources
for the deeper networks, their compute and convergence time
is slower. However, they do not get stuck in the optimiza-
tion and produce among the best results. Table 1 reports the
corresponding word error rates on the test set. The 8 hidden
layer neural network produces the best rate of 10.9%, but this
is closely followed by the 10 and 12 hidden layer HNN.

We also tested very deep logistic networks from random
initialization but did observe that the optimization gets stuck
when using 8 hidden layers and more. After one week, 8
hidden layers logistic network achieves a mere word error rate
of 12.0%.

5.2. Unsupervised Learning Experiments
To validate the use of ReLUs for unsupervised learning, we
trained using the same input data as in the previous section
(but without making use of the labels). After learning, we
first inspected the learned features. Fig. 5 shows a subset of
the 2560 features where each tile corresponds to the weights
connected to a hidden unit. Some features resemble Gabor
functions localized in the time-frequency domain, but others
are more complex and seem to capture the structure and the
temporal dynamics of formants. We also tested the use of
logistic units and linear units, but could not learn any struc-

Fig. 5. Left: Random subset of the 2560 filters learned in
an unsupervised way. The vertical axis is over frequencies
and horizontal axis is over time (26 frames, each 10ms long).
Right: Example of how some filters (left part) match sam-
ples on a validation set (right part with corresponding phone
label).

Phone label Precision % Recall % Accuracy %
er 57.0 2.0 98.5
iy 49.6 11.0 96.7
r 52.5 6.0 97.2

Table 2. Unsupervised discovery of phones: a threshold on a
single feature can be a high accuracy phone detector.

Nr. hid. layers 0 1 2 3
Frame accuracy % 28.5 37.8 38.3 39.2

Table 3. Test frame accuracy using a linear classifier on the
features learned in an unsupervised way.

ture set of features. To better interpret the ReLU features, we
looked for the best matching input sample in the validation
set. Leftmost part of fig. 5 shows how some filters resemble
closely actual inputs, suggesting that some of these features
may have discovered phonetic elements in an unsupervised
way. To validate this hypothesis, we used each single feature
as a threshold classifier and checked whether its output corre-
lates with the phone label of the input. Table 2 shows that this
is indeed the case for some phones. Since the large fraction
of frames has label “silence”, there is a very large number of
negative inputs and achieving a precision of 50% at a recall
greater than 1% is considered remarkable.

The discrimination ability of ReLUs is expected to im-
prove when we consider the whole feature set. We therefore
trained a linear logistic regression classifier on the whole fea-
ture vector. Table 3 reports the frame accuracy as we learn
more layers of features and demonstrates that features do get
more discriminative as we stack them, although with dimin-
ishing returns. Using these features to initialize a deep HNN
did not improve performance, however. We observed faster
initial convergence but not better accuracy after a few hours
of training.

6. CONCLUSION

In this empirical study we advocate the use of ReLU in deep
networks since a) they are easier to optimize, b) they converge
faster, c) they generalize better and d) they are faster to com-
pute. Future work will leverage unsupervised learning and
ReLUs for tasks where labeled data is very scarce.

Recent advances in the f ield of 
representation learning (including deep 
learning) have enabled significant progress 
on various machine learning tasks 
including object and speech recognition. 
These methods automatically learn 
intermediate representations of a signal of 
interest (e.g. image, speech, music) that 
maximize performance on a given task. 
This distinguishes representation learning 
from other machine learning approaches 
which rely on “hand-coded” features 
which have been carefully designed using 
domain knowledge. Much of this line of research is motivated by 
knowledge about biological neural networks and the manner in 
which humans learn and encode information. Common 
architectures include regularized auto-encoders, restricted 
Boltzmann machines, convolutional neural networks (CNN), deep 
belief networks and other artificial neural networks (ANNs). 


